12 research outputs found

    Human-aware space sharing and navigation for an interactive robot

    Get PDF
    Les mĂ©thodes de planification de mouvements robotiques se sont dĂ©veloppĂ©es Ă  un rythme accĂ©lĂ©rĂ© ces derniĂšres annĂ©es. L'accent a principalement Ă©tĂ© mis sur le fait de rendre les robots plus efficaces, plus sĂ©curisĂ©s et plus rapides Ă  rĂ©agir Ă  des situations imprĂ©visibles. En consĂ©quence, nous assistons de plus en plus Ă  l'introduction des robots de service dans notre vie quotidienne, en particulier dans les lieux publics tels que les musĂ©es, les centres commerciaux et les aĂ©roports. Tandis qu'un robot de service mobile se dĂ©place dans l'environnement humain, il est important de prendre en compte l'effet de son comportement sur les personnes qu'il croise ou avec lesquelles il interagit. Nous ne les voyons pas comme de simples machines, mais comme des agents sociaux et nous nous attendons Ă  ce qu'ils se comportent de maniĂšre similaire Ă  l'homme en suivant les normes sociĂ©tales comme des rĂšgles. Ceci a crĂ©Ă© de nouveaux dĂ©fis et a ouvert de nouvelles directions de recherche pour concevoir des algorithmes de commande de robot, qui fournissent des comportements de robot acceptables, lisibles et proactifs. Cette thĂšse propose une mĂ©thode coopĂ©rative basĂ©e sur l'optimisation pour la planification de trajectoire et la navigation du robot avec des contraintes sociales intĂ©grĂ©es pour assurer des mouvements de robots prudents, conscients de la prĂ©sence de l'ĂȘtre humain et prĂ©visibles. La trajectoire du robot est ajustĂ©e dynamiquement et continuellement pour satisfaire ces contraintes sociales. Pour ce faire, nous traitons la trajectoire du robot comme une bande Ă©lastique (une construction mathĂ©matique reprĂ©sentant la trajectoire du robot comme une sĂ©rie de positions et une diffĂ©rence de temps entre ces positions) qui peut ĂȘtre dĂ©formĂ©e (dans l'espace et dans le temps) par le processus d'optimisation pour respecter les contraintes donnĂ©es. De plus, le robot prĂ©dit aussi les trajectoires humaines plausibles dans la mĂȘme zone d'exploitation en traitant les chemins humains aussi comme des bandes Ă©lastiques. Ce systĂšme nous permet d'optimiser les trajectoires des robots non seulement pour le moment prĂ©sent, mais aussi pour l'interaction entiĂšre qui se produit lorsque les humains et les robots se croisent les uns les autres. Nous avons rĂ©alisĂ© un ensemble d'expĂ©riences avec des situations interactives humains-robots qui se produisent dans la vie de tous les jours telles que traverser un couloir, passer par une porte et se croiser sur de grands espaces ouverts. La mĂ©thode de planification coopĂ©rative proposĂ©e se compare favorablement Ă  d'autres schĂ©mas de planification de la navigation Ă  la pointe de la technique. Nous avons augmentĂ© le comportement de navigation du robot avec un mouvement synchronisĂ© et rĂ©actif de sa tĂȘte. Cela permet au robot de regarder oĂč il va et occasionnellement de dĂ©tourner son regard vers les personnes voisines pour montrer que le robot va Ă©viter toute collision possible avec eux comme prĂ©vu par le planificateur. À tout moment, le robot pondĂšre les multiples critĂšres selon le contexte social et dĂ©cide de ce vers quoi il devrait porter le regard. GrĂące Ă  une Ă©tude utilisateur en ligne, nous avons montrĂ© que ce mĂ©canisme de regard complĂšte efficacement le comportement de navigation ce qui amĂ©liore la lisibilitĂ© des actions du robot. Enfin, nous avons intĂ©grĂ© notre schĂ©ma de navigation avec un systĂšme de supervision plus large qui peut gĂ©nĂ©rer conjointement des comportements du robot standard tel que l'approche d'une personne et l'adaptation de la vitesse du robot selon le groupe de personnes que le robot guide dans des scĂ©narios d'aĂ©roport ou de musĂ©e.The methods of robotic movement planning have grown at an accelerated pace in recent years. The emphasis has mainly been on making robots more efficient, safer and react faster to unpredictable situations. As a result we are witnessing more and more service robots introduced in our everyday lives, especially in public places such as museums, shopping malls and airports. While a mobile service robot moves in a human environment, it leaves an innate effect on people about its demeanor. We do not see them as mere machines but as social agents and expect them to behave humanly by following societal norms and rules. This has created new challenges and opened new research avenues for designing robot control algorithms that deliver human-acceptable, legible and proactive robot behaviors. This thesis proposes a optimization-based cooperative method for trajectoryplanning and navigation with in-built social constraints for keeping robot motions safe, human-aware and predictable. The robot trajectory is dynamically and continuously adjusted to satisfy these social constraints. To do so, we treat the robot trajectory as an elastic band (a mathematical construct representing the robot path as a series of poses and time-difference between those poses) which can be deformed (both in space and time) by the optimization process to respect given constraints. Moreover, we also predict plausible human trajectories in the same operating area by treating human paths also as elastic bands. This scheme allows us to optimize the robot trajectories not only for the current moment but for the entire interaction that happens when humans and robot cross each other's paths. We carried out a set of experiments with canonical human-robot interactive situations that happen in our everyday lives such as crossing a hallway, passing through a door and intersecting paths on wide open spaces. The proposed cooperative planning method compares favorably against other stat-of-the-art human-aware navigation planning schemes. We have augmented robot navigation behavior with synchronized and responsive movements of the robot head, making the robot look where it is going and occasionally diverting its gaze towards nearby people to acknowledge that robot will avoid any possible collision with them. At any given moment the robot weighs multiple criteria according to the social context and decides where it should turn its gaze. Through an online user study we have shown that such gazing mechanism effectively complements the navigation behavior and it improves legibility of the robot actions. Finally, we have integrated our navigation scheme with a broader supervision system which can jointly generate normative robot behaviors such as approaching a person and adapting the robot speed according to a group of people who the robot guides in airports or museums

    Simulation and HRI Recent Perspectives with the MORSE Simulator

    Get PDF
    Lemaignan S, Hanheide M, Karg M, et al. Simulation and HRI Recent Perspectives with the MORSE Simulator. In: Brugali D, Broenink JF, Kroeger T, MacDonald B, eds. Simulation, Modeling, and Programming for Autonomous Robots. 4th International Conference, proceedings. Lecture Notes in Artificial Intelligence (LNAI). Vol 8810. Cham: Springer International Publishing; 2014.Simulation in robotics is often a love-hate relationship: while simulators do save us a lot of time and effort compared to regular deployment of complex software architectures on complex hardware, simulators are also known to evade many (if not most) of the real issues that robots need to manage when they enter the real world. Because humans are the paragon of dynamic, unpredictable, complex, real world entities, simulation of human-robot interactions may look condemn to fail, or, in the best case, to be mostly useless. This collective article reports on five independent applications of the MORSE simulator in the field of human-robot interaction: It appears that simulation is already useful, if not essential, to successfully carry out research in the field of HRI, and sometimes in scenarios we do not anticipate

    Navigation conviviale et partage de l’espace avec les hommes pour un robot interactif

    No full text
    National audienceThe methods of robotic movement planning have grown at an accelerated pace in recent years. The emphasis has mainly been on making robots more efficient, safer and react faster to unpredictable situations. As a result we are witnessing more and more service robots introduced in our everyday lives, especially in public places such as museums, shopping malls and airports. While a mobile service robot moves in a human environment, it leaves an innate effect on people about its demeanor. We do not see them as mere machines but as social agents and expect them to behave humanly by following societal norms and rules. This has created new challenges and opened new research avenues for designing robot control algorithms that deliver human-acceptable, legible and proactive robot behaviors. This thesis proposes a optimization-based cooperative method for trajectoryplanning and navigation with in-built social constraints for keeping robot motions safe, human-aware and predictable. The robot trajectory is dynamically and continuously adjusted to satisfy these social constraints. To do so, we treat the robot trajectory as an elastic band (a mathematical construct representing the robot path as a series of poses and time-difference between those poses) which can be deformed (both in space and time) by the optimization process to respect given constraints. Moreover, we also predict plausible human trajectories in the same operating area by treating human paths also as elastic bands. This scheme allows us to optimize the robot trajectories not only for the current moment but for the entire interaction that happens when humans and robot cross each other's paths. We carried out a set of experiments with canonical human-robot interactive situations that happen in our everyday lives such as crossing a hallway, passing through a door and intersecting paths on wide open spaces. The proposed cooperative planning method compares favorably against other stat-of-the-art human-aware navigation planning schemes. We have augmented robot navigation behavior with synchronized and responsive movements of the robot head, making the robot look where it is going and occasionally diverting its gaze towards nearby people to acknowledge that robot will avoid any possible collision with them. At any given moment the robot weighs multiple criteria according to the social context and decides where it should turn its gaze. Through an online user study we have shown that such gazing mechanism effectively complements the navigation behavior and it improves legibility of the robot actions. Finally, we have integrated our navigation scheme with a broader supervision system which can jointly generate normative robot behaviors such as approaching a person and adapting the robot speed according to a group of people who the robot guides in airports or museums.Les mĂ©thodes de planification de mouvements robotiques se sont dĂ©veloppĂ©es Ă  un rythme accĂ©lĂ©rĂ© ces derniĂšres annĂ©es. L'accent a principalement Ă©tĂ© mis sur le fait de rendre les robots plus efficaces, plus sĂ©curisĂ©s et plus rapides Ă  rĂ©agir Ă  des situations imprĂ©visibles. En consĂ©quence, nous assistons de plus en plus Ă  l'introduction des robots de service dans notre vie quotidienne, en particulier dans les lieux publics tels que les musĂ©es, les centres commerciaux et les aĂ©roports. Tandis qu'un robot de service mobile se dĂ©place dans l'environnement humain, il est important de prendre en compte l'effet de son comportement sur les personnes qu'il croise ou avec lesquelles il interagit. Nous ne les voyons pas comme de simples machines, mais comme des agents sociaux et nous nous attendons Ă  ce qu'ils se comportent de maniĂšre similaire Ă  l'homme en suivant les normes sociĂ©tales comme des rĂšgles. Ceci a crĂ©Ă© de nouveaux dĂ©fis et a ouvert de nouvelles directions de recherche pour concevoir des algorithmes de commande de robot, qui fournissent des comportements de robot acceptables, lisibles et proactifs. Cette thĂšse propose une mĂ©thode coopĂ©rative basĂ©e sur l'optimisation pour la planification de trajectoire et la navigation du robot avec des contraintes sociales intĂ©grĂ©es pour assurer des mouvements de robots prudents, conscients de la prĂ©sence de l'ĂȘtre humain et prĂ©visibles. La trajectoire du robot est ajustĂ©e dynamiquement et continuellement pour satisfaire ces contraintes sociales. Pour ce faire, nous traitons la trajectoire du robot comme une bande Ă©lastique (une construction mathĂ©matique reprĂ©sentant la trajectoire du robot comme une sĂ©rie de positions et une diffĂ©rence de temps entre ces positions) qui peut ĂȘtre dĂ©formĂ©e (dans l'espace et dans le temps) par le processus d'optimisation pour respecter les contraintes donnĂ©es. De plus, le robot prĂ©dit aussi les trajectoires humaines plausibles dans la mĂȘme zone d'exploitation en traitant les chemins humains aussi comme des bandes Ă©lastiques. Ce systĂšme nous permet d'optimiser les trajectoires des robots non seulement pour le moment prĂ©sent, mais aussi pour l'interaction entiĂšre qui se produit lorsque les humains et les robots se croisent les uns les autres. Nous avons rĂ©alisĂ© un ensemble d'expĂ©riences avec des situations interactives humains-robots qui se produisent dans la vie de tous les jours telles que traverser un couloir, passer par une porte et se croiser sur de grands espaces ouverts. La mĂ©thode de planification coopĂ©rative proposĂ©e se compare favorablement Ă  d'autres schĂ©mas de planification de la navigation Ă  la pointe de la technique. Nous avons augmentĂ© le comportement de navigation du robot avec un mouvement synchronisĂ© et rĂ©actif de sa tĂȘte. Cela permet au robot de regarder oĂč il va et occasionnellement de dĂ©tourner son regard vers les personnes voisines pour montrer que le robot va Ă©viter toute collision possible avec eux comme prĂ©vu par le planificateur. À tout moment, le robot pondĂšre les multiples critĂšres selon le contexte social et dĂ©cide de ce vers quoi il devrait porter le regard. GrĂące Ă  une Ă©tude utilisateur en ligne, nous avons montrĂ© que ce mĂ©canisme de regard complĂšte efficacement le comportement de navigation ce qui amĂ©liore la lisibilitĂ© des actions du robot. Enfin, nous avons intĂ©grĂ© notre schĂ©ma de navigation avec un systĂšme de supervision plus large qui peut gĂ©nĂ©rer conjointement des comportements du robot standard tel que l'approche d'une personne et l'adaptation de la vitesse du robot selon le groupe de personnes que le robot guide dans des scĂ©narios d'aĂ©roport ou de musĂ©e

    Assessing the Social Criteria for Human-Robot Collaborative Navigation: A Comparison of Human-Aware Navigation Planners

    No full text
    International audienceThis paper focuses on requirements for effective human robot collaboration in interactive navigation scenarios. We designed several use-cases where humans and robot had to move in the same environment that resemble canonical path-crossing situations. These use-cases include open as well as constrained spaces. Three different state-of-the-art human-aware navigation planners were used for planning the robot paths during all selected use-cases. We compare results of simulation experiments with these human-aware planners in terms of quality of generated trajectories together with discussion on capabilities and limitations of the planners. The results show that the human-robot collaborative planner performs better in everyday path-crossing configurations. This suggests that the criteria used by the human-robot collaborative planner (safety, time-to-collision, directional-costs) are possible good measures for designing acceptable human-aware navigation planners. Consequently, we analyze the effects of these social criteria and draw perspectives on future evolution of human-aware navigation planning methods

    Viewing Robot Navigation in Human Environment as a Cooperative Activity

    No full text
    International audienceWe claim that navigation in human environments can be viewed as cooperative activity especially in constrained situations. Humans concurrently aid and comply with each other while moving in a shared space. Cooperation helps pedestrians to efficiently reach their own goals and respect conventions such as the personal space of others. To meet human comparable efficiency, a robot needs to predict the human trajectories and plan its own trajectory correspondingly in the same shared space. In this work, we present a navigation planner that is able to plan such cooperative trajectories, simultaneously enforcing the robot's kinematic constraints and avoiding other non-human dynamic obstacles. Using robust social constraints of projected time to a possible future collision, compatibility of human-robot motion direction, and proxemics, our planner is able to replicate human-like navigation behavior not only in open spaces but also in confined areas. Besides adapting the robot trajectory, the planner is also able to proactively propose co-navigation solutions by jointly computing human and robot trajectories within the same optimization framework. We demonstrate richness and performance of the cooperative planner with simulated and real world experiments on multiple interactive navigation scenarios

    A Human-Robot Cooperative Navigation Planner

    No full text
    International audienceNavigation in human environments is a cooperative task and needs to be treated as it is. Humans concurrently assist and comply with each other. To achieve comparable efficiency, a robot needs to predict human trajectories and plan its own trajectory accordingly. We present a navigation planner that is able to plan such cooperative trajectories simultaneously respecting the robot's kinematic constraints and avoiding other non-human dynamic obstacles. Besides adapting the robot trajectory, the planner is also able to proactively propose co-navigation solutions especially in confined spaces

    Head-Body Motion Coordination for Human Aware Robot Navigation

    No full text
    International audienceMobile robots equipped with a pan-tilt head need to use gaze direction to manifest its navigational intents for more acceptable human-robot interaction. We frame control of such gaze behavior as multi-criteria decision-making problem, and provide a solution to synchronize gaze control with robot's navigation planner. This approach is useful in the context of robot navigation, where it may be inapt to display only a predefined gaze pattern due to the dynamic nature of the scene. By enabling two behaviors, look-at-path and glance-at-human, we demonstrate the effectiveness of our approach on a real robotic platform in a path crossing scenario. Furthermore, we discuss results of a video based user study conducted with 126 participants showing improved communication of robot's navigational intentions with the proposed approach

    Evaluating directional cost models in navigation

    No full text
    A common approach to social distancing in robot navigation are spatial cost functions around humans that cause the robot to prefer paths that do not come too close to humans. However, in unpredictably dynamic scenarios, following such paths may produce robot behavior that appears confused. The concept of directional costs in cost functions [9] is supposed to alleviate this problem without incurring the problem of combinatorial explosions using temporal planning. With directional cost functions, a robot attempts to solve spatial conflicts by adjusting the velocity instead of the path, where possible. To complement results from simulations, in this paper we describe a user study we conducted with a PR2 robot and human participants to evaluate the new cost function type. The study shows that the real robot behavior is similar to the observations in simulation, and that participants rate the robot behavior less confusing with the adapted cost model. The study also shows other important behavior cues that can influence motion legibility

    An Adaptive and Proactive Human-Aware Robot Guide

    No full text
    International audienceIn this paper we present a robotic system able to guide a person to a destination in a socially acceptable way. Our robot is able to estimate if the user is still actively following and react accordingly. This is achieved by stopping and waiting for the user or by changing the robot's speed to adapt to his needs. We also investigate how the robot can influence a person's behavior by changing its speed, to account for the urgency of the current task or for environmental stimulus, and by interacting with him when he stops following it. We base the planning model on Hierarchical Mixed Observability Markov Decision Processes to decompose the task in smaller subsets, simplifying the computation of a solution. Experimental results suggest the efficacy of our model

    Robots Learning How and Where to Approach People

    No full text
    International audienceRobot navigation in human environments has been in the eyes of researchers for the last few years. Robots operating under these circumstances have to take human awareness into consideration for safety and acceptance reasons. Nonetheless , navigation have been often treated as going towards a goal point or avoiding people, without considering the robot engaging a person or a group of people in order to interact with them. This paper presents two navigation approaches based on the use of inverse reinforcement learning (IRL) from exemplar situations. This allow us to implement two path planners that take into account social norms for navigation towards isolated people. For the first planner, we learn an appropriate way to approach a person in an open area without static obstacles, this information is used to generate robot's path plan. As for the second planner, we learn the weights of a linear combination of continuous functions that we use to generate a costmap for the approach-behavior. This costmap is then combined with others, e.g. a costmap with higher cost around obstacles, and finally a path is generated with Dijkstra's algorithm
    corecore